MATH 2A/5A Prep: Exponential and Logarithm Functions

1. Determine whether $3 \ln(3) - 2 \ln(6)$ is positive or negative.

Solution:

$$3\ln(3) - 2\ln(6) = \ln(3^3) - \ln(6^2) = \ln(27) - \ln(36) = \ln\left(\frac{27}{36}\right)$$

Now $\frac{27}{36} < 1$, so by the graph of $y = \ln(x)$, we know $\ln\left(\frac{27}{36}\right) < 0$.

2. Order the numbers e^{4+4} , $e^{4\cdot 4}$ and e^{4^3} from smallest to largest.

Solution:

$$e^{4+4} = e^8$$

$$e^{4\cdot 4} = e^{16}$$

$$e^{4^3} = e^{64}$$

Using the graph of $y = e^x$ and the positions of 8, 16 and 64 on x axis, we know that

$$e^8 < e^{16} < e^{64}$$
.

So

$$e^{4+4} < e^{4\cdot 4} < e^{4^3}.$$

3. Solve the equation $e^{2x} = 9$.

Solution: Take logarithm on both sides of the equation, we get

$$\ln(e^{2x}) = \ln(9)$$

$$2x = \ln(3^2)$$

$$2x = 2\ln(3)$$

$$x = \ln(3)$$

So the solution is $x = \ln(3)$.

Note: If you somehow get $x = \ln(-3)$, this is not a solution because $\ln(-3)$ is undefined.

4. Solve the equation ln(1+x) - ln(1-x) = 1.

Solution:
$$\ln(1+x) - \ln(1-x) = 1$$

$$\ln\left(\frac{1+x}{1-x}\right) = 1$$

$$\frac{1+x}{1-x} = e^1 = e \text{ (by taking exponential of both sides)}$$

$$1+x = e(1-x)$$

$$x+ex = e-1$$

$$(e+1)x = e-1$$

$$x = \frac{e-1}{e+1}$$